*** Welcome to piglix ***

Astatine-211

Main isotopes of astatine
Iso­tope Decay
abun­dance half-life mode energy (MeV) pro­duct
209At syn 5.41 h β+ 3.486 209Po
α 5.758 205Bi
210At syn 8.1 h β+ 3.981 210Po
α 5.632 206Bi
211At syn 7.21 h ε 0.786 211Po
α 5.983 207Bi

Astatine (85At) has 37 known isotopes, all of which are radioactive; the range of their mass numbers is from 191 to 229. There also exist 23 metastable excited states. The longest-lived isotope is 210At, which has a half-life of 8.1 hours; the longest-lived isotope existing in naturally occurring decay chains is 219At with a half-life of 56 seconds.

There are 32 known isotopes of astatine, with atomic masses (mass numbers) of 191 and 193–223. No stable or even long-lived astatine isotope is known, and no such isotope is expected to exist.

Astatine has 23 nuclear isomers (nuclei with one or more nucleons – protons or neutrons – in an excited state). A nuclear isomer may also be called a "meta-state"; this means the system has more internal energy than the "ground state" (the state with the lowest possible internal energy), making the former likely to decay into the latter. There may be more than one isomer for each isotope. The most stable of them is astatine-202m1, which has a half-life of about 3 minutes; this is longer than those of all ground states except those of isotopes 203–211 and 220. The least stable one is astatine-214m1; its half-life of 265 ns is shorter than those of all ground states except that of astatine-213.

Alpha decay energy follows the same trend as for other heavy elements. Lighter astatine isotopes have quite high energies of alpha decay, which become lower as the nuclei become heavier. However, astatine-211 has a significantly higher energy than the previous isotope; it has a nucleus with 126 neutrons, and 126 is a magic number (corresponding to a filled neutron shell). Despite having a similar half-life time as the previous isotope (8.1 hours for astatine-210 and 7.2 hours for astatine-211), the alpha decay probability is much higher for the latter: 41.8 percent versus just 0.18 percent. The two following isotopes release even more energy, with astatine-213 releasing the highest amount of energy of all astatine isotopes. For this reason, it is the shortest-lived astatine isotope. Even though heavier astatine isotopes release less energy, no long-lived astatine isotope exists; this happens due to the increasing role of beta decay. This decay mode is especially important for astatine: as early as 1950, it was postulated that the element has no beta-stable isotopes (i.e., ones that do not undergo beta decay at all). A beta decay mode has been found for all astatine isotopes except for astatine-213, astatine-214, astatine-215, and astatine-216m. Among other isotopes: astatine-210 and the lighter isotopes decay by positron emission); astatine-216 and the heavier isotopes undergo beta decay; astatine-212 decays via either ways; and astatine-211 decays by electron capture instead.


...
Wikipedia

...