*** Welcome to piglix ***

Approximation ratio


In computer science and operations research, approximation algorithms are algorithms used to find approximate solutions to optimization problems. Approximation algorithms are often associated with NP-hard problems; since it is unlikely that there can ever be efficient polynomial-time exact algorithms solving NP-hard problems, one settles for polynomial-time sub-optimal solutions. Unlike heuristics, which usually only find reasonably good solutions reasonably fast, one wants provable solution quality and provable run-time bounds. Ideally, the approximation is optimal up to a small constant factor (for instance within 5% of the optimal solution). Approximation algorithms are increasingly being used for problems where exact polynomial-time algorithms are known but are too expensive due to the input size. A typical example for an approximation algorithm is the one for vertex cover in graphs: find an uncovered edge and add both endpoints to the vertex cover, until none remain. It is clear that the resulting cover is at most twice as large as the optimal one. This is a constant factor approximation algorithm with a factor of 2.

NP-hard problems vary greatly in their approximability; some, such as the bin packing problem, can be approximated within any factor greater than 1 (such a family of approximation algorithms is often called a polynomial time approximation scheme or PTAS). Others are impossible to approximate within any constant, or even polynomial factor unless P = NP, such as the maximum clique problem.


...
Wikipedia

...