Clinical data | |
---|---|
Trade names | Apokyn |
AHFS/Drugs.com | Monograph |
MedlinePlus | a604020 |
Pregnancy category |
|
Routes of administration |
Oral, SC |
ATC code | |
Legal status | |
Legal status | |
Pharmacokinetic data | |
Bioavailability | 100% following sc injection |
Protein binding | ~50% |
Metabolism | Hepatic |
Biological half-life | 40 minutes (range 30-60 minutes) |
Identifiers | |
|
|
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
ECHA InfoCard | 100.155.766 |
Chemical and physical data | |
Formula | C17H17NO2 |
Molar mass | 267.322 g/mol |
3D model (Jmol) | |
|
|
|
|
See also: data page | |
(what is this?) |
Apomorphine (brand names Apokyn, Ixense, Spontane, Uprima) is a type of aporphine having activity as a non-selective dopamine agonist which activates both D2-like and, to an order of magnitude lesser extent, D1-like receptors. It also acts as an antagonist of 5-HT2 and α-adrenergic receptors with high affinity. The compound is historically a morphine decomposition product by boiling with concentrated acid, hence the -morphine suffix. Apomorphine does not actually contain morphine or its skeleton, nor does it bind to opioid receptors. The apo- prefix relates to it being a morphine derivative ("[comes] from morphine").
Historically, apomorphine has been tried for a variety of uses including psychiatric treatment of homosexuality in the early 20th century, and more recently in treating erectile dysfunction. Currently, apomorphine is used in the treatment of Parkinson's disease. It is a potent emetic (i.e., it induces vomiting) and should not be administered without an antiemetic such as domperidone. The emetic properties of apomorphine are exploited in veterinary medicine to induce therapeutic emesis in canines that have recently ingested toxic or foreign substances.
It was also successfully used as a private treatment of heroin addiction, a purpose for which it was championed by the author William S. Burroughs. Burroughs and others claimed that it was a "metabolic regulator" with a restorative dimension to a damaged or dysfunctional dopaminergic system. There is more than enough anecdotal evidence to suggest that this offers a plausible route to an abstinence based model; however, no clinical trials have ever tested this hypothesis. A recent study indicates that apomorphine might be a suitable marker for assessing central dopamine system alterations associated with chronic heroin consumption. There is, however, no clinical evidence that apomorphine is an effective and safe treatment regimen for opiate addiction. Early studies involved aversion therapy in alcoholism and anxiety, and modern reports are anecdotal, although some practitioners claimed to be using non-aversive methods.