Alfred Tauber | |
---|---|
Born |
Pressburg, Austrian Empire (today Bratislava, Slovakia) |
5 November 1866
Died | 26 July 1942 Theresienstadt concentration camp |
(aged 75)
Nationality | Austrian |
Fields | Mathematics |
Institutions |
TH Vienna University of Vienna |
Alma mater | University of Vienna |
Theses |
|
Doctoral advisor | |
Known for | Abelian and tauberian theorems |
Alfred Tauber (5 November 1866 – 26 July 1942) was an Austrian and Slovak mathematician, known for his contribution to mathematical analysis and to the theory of functions of a complex variable: he is the eponym of an important class of theorems with applications ranging from mathematical and harmonic analysis to number theory. He was murdered in the Theresienstadt concentration camp.
Born in Bratislava, he began studying mathematics at Vienna University in 1884, obtained his Ph.D. in 1889, and his habilitation in 1891. Starting from 1892, he worked as chief mathematician at the Phönix insurance company until 1908, when he became an a.o. professor at Vienna University, though, already from 1901, he had been honorary professor at TH Vienna and director of its insurance mathematics chair. In 1933 he was awarded the Grand Decoration of Honour in Silver for Services to the Republic of Austria, and retired as emeritus extraordinary professor. However, He continued lecturing as a privatdozent until 1938, when he was forced to resign as a consequence of the "Anschluss". On 28–29 June 1942 he was deported with transport IV/2, č. 621 to Theresienstadt, where he was murdered on 26 July 1942.
Pinl & Dick (1974, p. 202) list 35 publications in the bibliography appended to his obituary, and also a search performed on the "Jahrbuch über die Fortschritte der Mathematik" database results in a list 35 mathematical works authored by him, spanning a period of time from 1891 to 1940. However, Hlawka (2007) cites two papers on actuarial mathematics which do not appear in these two bibliographical lists and Binder's bibliography of Tauber's works (1984, pp. 163–166), while listing 71 entries including the ones in the bibliography of Pinl & Dick (1974, p. 202) and the two cited by Hlawka, does not includes the short note (Tauber 1895) so the exact number of his works is not known. According to Hlawka (2007), his scientific research can be divided into three areas: the first one comprises his work on the theory of functions of a complex variable and on potential theory, the second one includes works on linear differential equations and on the Gamma function, while the last one includes his contributions to actuarial science.Pinl & Dick (1974, p. 202) give a more detailed list of research topics Tauber worked on, though it is restricted to mathematical analysis and geometric topics: some of them are infinite series, Fourier series, spherical harmonics, the theory of quaternions, analytic and descriptive geometry. Tauber's most important scientific contributions belong to the first of his research areas, even if his work on potential theory has been overshadowed by the one of Aleksandr Lyapunov.