In mathematics, abelian and tauberian theorems are theorems giving conditions for two methods of summing divergent series to give the same result, named after Niels Henrik Abel and Alfred Tauber. The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/n)) then the series converges to the Abel sum. More general abelian and tauberian theorems give similar results for more general summation methods.
There is no clear distinction between abelian and tauberian theorems, or even a generally accepted definition of what these terms mean. Often, a theorem is called "abelian" if it shows that some summation method gives the usual sum for convergent series, and is called "tauberian" if it gives conditions for a series summable by some method to be summable in the usual sense.
For any summation method L, its abelian theorem is the result that if c = (cn) is a convergent sequence, with limit C, then L(c) = C. An example is given by the Cesàro method, in which L is defined as the limit of the arithmetic means of the first N terms of c, as N tends to infinity. One can prove that if c does converge to C, then so does the sequence (dN) where
To see that, subtract C everywhere to reduce to the case C = 0. Then divide the sequence into an initial segment, and a tail of small terms: given any ε > 0 we can take N large enough to make the initial segment of terms up to cN average to at most ε/2, while each term in the tail is bounded by ε/2 so that the average is also necessarily bounded.
The name derives from Abel's theorem on power series. In that case L is the radial limit (thought of within the complex unit disk), where we let r tend to the limit 1 from below along the real axis in the power series with term