Alan Hall FRS (19 May 1952 – 3 May 2015) was a British cell biologist and a biology professor at the Sloan-Kettering Institute, where he was chair of the Cell Biology program. Hall was a Fellow of the Royal Society, a position he held since 1999.
Hall was born in Barnsley. He earned his BA in chemistry from Oxford University. He began his studies for a Ph.D. at Oxford, but after a few months he followed his major professor Jeremy R. Knowles to Harvard University, where he earned a Ph.D. in biochemistry. He then took postdoctoral fellowships in molecular biology at the University of Edinburgh and the University of Zurich.
Hall’s Ph.D. was on the enzymology of B-lactamase, which led to his first paper being published in Nature in 1976. He used strains of E. Coli with mutated B-lactamase, an antibiotic resistance enzyme, and assayed their activity in the presence of Benzylpenicillin and Cephalosporin C. Direct selection on these mutants allowed catalytic properties of B-lactamase to be identified and allowed structure-function relationships of the enzyme to be further researched.
In 1981 he went to work at Institute for Cancer Research in London, where he stayed for 12 years. His work, in collaboration with his colleague and close friend Christopher Marshall, made seminal contributions to our understanding of cell signalling in animal cells, in particular the role of Rho and Ras small GTPases in regulating a variety of cellular functions such as proliferation, morphology and migration. In 1982, Hall helped identify transforming sequences in human sarcoma cells lines at the Institute for Cancer Research in London. DNA from a rhabdomyosarcoma cell line and a fibrosarcoma cell line transformed a NIH/3T3 mouse fibroblast cell line. After injection into mice, tumors started to form in as little as 10 days. Next, the transforming activities of the rhabdomyosarcoma and fibrosarcoma cell lines were measured after being digested with an array of endonucleases. Further DNA testing showed that the transforming sequences in the two cancer cell lines were the same, and the gene was later characterized as N-ras, a member of the Ras gene family.