Propulsion is a means of creating force leading to movement. The term is derived from two Latin words: , meaning before or forward; and , meaning to drive. A propulsion system consists of a source of mechanical power, and a propulsor (means of converting this power into propulsive force).
A technological system uses an engine or motor as the power source, and wheels and axles, propellers, or a propulsive nozzle to generate the force. Components such as clutches or gearboxes may be needed to connect the motor to axles, wheels, or propellors.
Biological propulsion systems use an animal's muscles as the power source, and limbs such as wings, fins or legs as the propulsors.
An aircraft propulsion system generally consists of an aircraft engine and some means to generate thrust, such as a propeller or a propulsive nozzle.
An aircraft propulsion system must achieve two things. First, the thrust from the propulsion system must balance the drag of the airplane when the airplane is cruising. And second, the thrust from the propulsion system must exceed the drag of the airplane for the airplane to accelerate. In fact, the greater the difference between the thrust and the drag, called the excess thrust, the faster the airplane will accelerate.
Some aircraft, like airliners and cargo planes, spend most of their life in a cruise condition. For these airplanes, excess thrust is not as important as high engine efficiency and low fuel usage. Since thrust depends on both the amount of gas moved and the velocity, we can generate high thrust by accelerating a large mass of gas by a small amount, or by accelerating a small mass of gas by a large amount. Because of the aerodynamic efficiency of propellers and fans, it is more fuel efficient to accelerate a large mass by a small amount, which is why high-bypass turbofans and turboprops are commonly used on cargo planes and airliners.