*** Welcome to piglix ***

Clutch


A clutch is a mechanical device that engages and disengages the power, transmission, especially from driving shaft to driven shaft.

Clutches are used whenever the transmission of power or motion must be controlled either in amount or over time (e.g., electric screwdrivers limit how much torque is transmitted through use of a clutch; clutches control whether automobiles transmit engine power to the wheels).

In the simplest application, clutches connect and disconnect two rotating shafts (drive shafts or line shafts). In these devices, one shaft is typically attached to an engine or other power unit (the driving member) while the other shaft (the driven member) provides output power for work. While typically the motions involved are rotary, linear clutches are also possible.

In a torque-controlled drill, for instance, one shaft is driven by a motor and the other drives a drill chuck. The clutch connects the two shafts so they may be locked together and spin at the same speed (engaged), locked together but spinning at different speeds (slipping), or unlocked and spinning at different speeds (disengaged).

This type of clutch has protruding circular edge and a hole for them that engages and disengages during operation. This type is less effective since human foot or hand power on clutching reaches about 10 KN or 1,000 kg.

The vast majority of clutches ultimately rely on frictional forces for their operation. The purpose of friction clutches is to connect a moving member to another that is moving at a different speed or stationary, often to synchronize the speeds, and/or to transmit power. Usually, as little slippage (difference in speeds) as possible between the two members is desired.

Various materials have been used for the disc-friction facings, including asbestos in the past. Modern clutches typically use a compound organic resin with copper wire facing or a ceramic material. Ceramic materials are typically used in heavy applications such as racing or heavy-duty hauling, though the harder ceramic materials increase flywheel and pressure plate wear.

In the case of "wet" clutches, composite paper materials are very common. Since these "wet" clutches typically use an oil bath or flow-through cooling method for keeping the disc pack lubricated and cooled, very little wear is seen when using composite paper materials.


...
Wikipedia

...