Acute-phase proteins (APPs) are a class of proteins whose plasma concentrations increase (positive acute-phase proteins) or decrease (negative acute-phase proteins) in response to inflammation. This response is called the acute-phase reaction (also called acute-phase response). The terms acute-phase protein and acute-phase reactant (APR) are often used synonymously, although some APRs are (strictly speaking) polypeptides rather than proteins.
In response to injury, local inflammatory cells (neutrophil granulocytes and macrophages) secrete a number of cytokines into the bloodstream, most notable of which are the interleukins IL1, IL6 and IL8, and TNFα. The liver responds by producing a large number of acute-phase reactants. At the same time, the production of a number of other proteins is reduced; these proteins are, therefore, referred to as "negative" acute-phase reactants. Increased acute-phase proteins from the liver may also contribute to the promotion of sepsis.
Positive acute-phase proteins serve (part of the innate immune system) different physiological functions for the immune system. Some act to destroy or inhibit growth of microbes, e.g., C-reactive protein, mannose-binding protein,complement factors, ferritin, ceruloplasmin, serum amyloid A and haptoglobin. Others give negative feedback on the inflammatory response, e.g. serpins. Alpha 2-macroglobulin and coagulation factors affect coagulation, mainly stimulating it. This pro-coagulant effect may limit infection by trapping pathogens in local blood clots. Also, some products of the coagulation system can contribute to the innate immune system by their ability to increase vascular permeability and act as chemotactic agents for phagocytic cells.