In mathematical logic, abstract algebraic logic is the study of the algebraization of deductive systems arising as an abstraction of the well-known Lindenbaum-Tarski algebra, and how the resulting algebras are related to logical systems.
The archetypal association of this kind, one fundamental to the historical origins of algebraic logic and lying at the heart of all subsequently developed subtheories, is the association between the class of Boolean algebras and classical propositional calculus. This association was discovered by George Boole in the 1850s, and refined by others, especially Ernst Schröder in the 1890s. This work culminated in Lindenbaum-Tarski algebras, devised by Alfred Tarski and his student Adolf Lindenbaum in the 1930s. Later, Tarski and his American students (whose ranks include Don Pigozzi) went on to discover cylindric algebra, which algebraizes all of classical first-order logic, and revived relation algebra, whose models include all well-known axiomatic set theories.
Classical algebraic logic, which comprises all work in algebraic logic until about 1960, studied the properties of specific classes of algebras used to "algebraize" specific logical systems of particular interest to specific logical investigations. Generally, the algebra associated with a logical system was found to be a type of lattice, possibly enriched with one or more unary operations other than lattice complementation.