*** Welcome to piglix ***

Complemented lattice


In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique.

A relatively complemented lattice is a lattice such that every interval [cd], viewed as a bounded lattice in its own right, is a complemented lattice.

An orthocomplementation on a complemented lattice is an involution which is order-reversing and maps each element to a complement. An orthocomplemented lattice satisfying a weak form of the modular law is called an orthomodular lattice.

In distributive lattices, complements are unique. Every complemented distributive lattice has a unique orthocomplementation and is in fact a Boolean algebra.

A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b such that

In general an element may have more than one complement. However, in a (bounded) distributive lattice every element will have at most one complement. A lattice in which every element has exactly one complement is called a uniquely complemented lattice

A lattice with the property that every interval (viewed as a sublattice) is complemented is called a relatively complemented lattice. In other words, a relatively complemented lattice is characterized by the property that for every element a in an interval [c, d] there is an element b such that

Such an element b is called a complement of a relative to the interval.


...
Wikipedia

...