In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.
What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected problems like representation and duality. Well known results like the representation theorem for Boolean algebras and Stone duality fall under the umbrella of classical algebraic logic (Czelakowski 2003).
Works in the more recent abstract algebraic logic (AAL) focus on the process of algebraization itself, like classifying various forms of algebraizability using the Leibniz operator (Czelakowski 2003).
Algebraic logic treats algebraic structures, often bounded lattices, as models (interpretations) of certain logics, making logic a branch of the order theory.
In algebraic logic:
In the table below, the left column contains one or more logical or mathematical systems, and the algebraic structure which are its models are shown on the right in the same row. Some of these structures are either Boolean algebras or proper extensions thereof. Modal and other nonclassical logics are typically modeled by what are called "Boolean algebras with operators."