*** Welcome to piglix ***

Abstract Wiener space


An abstract Wiener space is a mathematical object in measure theory, used to construct a "decent" (strictly positive and locally finite) measure on an infinite-dimensional vector space. It is named after the American mathematician Norbert Wiener. Wiener's original construction only applied to the space of real-valued continuous paths on the unit interval, known as classical Wiener space; Leonard Gross provided the generalization to the case of a general separable Banach space.

The structure theorem for Gaussian measures states that all Gaussian measures can be represented by the abstract Wiener space construction.

Let H be a separable Hilbert space. Let E be a separable Banach space. Let i : H → E be an injective continuous linear map with dense image (i.e., the closure of i(H) in E is E itself) that radonifies the canonical Gaussian cylinder set measure γH on H. Then the triple (iHE) (or simply i : H → E) is called an abstract Wiener space. The measure γ induced on E is called the abstract Wiener measure of i : H → E.


...
Wikipedia

...