In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure is one that is "nowhere zero", or that it is zero "only on points".
Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on (X, Σ) is called strictly positive if every non-empty open subset of X has strictly positive measure.
In more condensed notation, μ is strictly positive if and only if