14-3-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Crystal structure of the 14-3-3 zeta:serotonin N-acetyltransferase complex.
|
|||||||||
Identifiers | |||||||||
Symbol | 14-3-3 | ||||||||
Pfam | PF00244 | ||||||||
InterPro | IPR000308 | ||||||||
SMART | 14_3_3 | ||||||||
PROSITE | PDOC00633 | ||||||||
SCOP | 1a4o | ||||||||
SUPERFAMILY | 1a4o | ||||||||
|
Available protein structures: | |
---|---|
Pfam | structures |
PDB | RCSB PDB; PDBe; PDBj |
PDBsum | structure summary |
14-3-3 proteins are a family of conserved regulatory molecules that are expressed in all eukaryotic cells. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. More than 200 signaling proteins have been reported as 14-3-3 ligands.
The name 14-3-3 refers to the particular elution and migration pattern of these proteins on DEAE-cellulose chromatography and starch-gel electrophoresis. The 14-3-3 proteins eluted in the 14th fraction of bovine brain homogenate and were found on positions 3.3 of subsequent electrophoresis by Moore and Perez (1967).
Elevated amounts of 14-3-3 proteins are found in the cerebrospinal fluid of patients with Creutzfeldt–Jakob disease.
There are seven genes that encode seven distinct 14-3-3 proteins in most mammals (See Human genes below) and 13-15 genes in many higher plants, though typically in fungi they are present only in pairs. Protists have at least one. Eukaryotes can tolerate the loss of a single 14-3-3 gene if multiple genes are expressed, however deletion of all 14-3-3s (as experimentally determined in yeast) results in death.
14-3-3 proteins can be considered evolved members of the Tetratrico Peptide Repeat (TPR) superfamily, generally have 9 or 10 alpha helices, and usually form homo- and/or hetero-dimer interactions along their amino-termini helices. These proteins contain a number of known common modification domains, including regions for divalent cation interaction, phosphorylation & acetylation, and proteolytic cleavage, among others established and predicted.