Names | |
---|---|
IUPAC name
3-Aminopropanoic acid
|
|
Other names
β-Alanine
3-Aminopropionic acid |
|
Identifiers | |
3D model (Jmol)
|
|
ChEBI | |
ChemSpider | |
DrugBank | |
ECHA InfoCard | 100.003.215 |
EC Number | 203-536-5 |
KEGG | |
PubChem CID
|
|
UNII | |
|
|
|
|
Properties | |
C3H7NO2 | |
Molar mass | 89.093 g/mol |
Appearance | white bipyramidal crystals |
Odor | odorless |
Density | 1.437 g/cm3 (19 °C) |
Melting point | 207 °C (405 °F; 480 K) (decomposes) |
54.5 g/100 mL | |
Solubility | soluble in methanol. Insoluble in diethyl ether, acetone |
log P | -3.05 |
Acidity (pKa) | 3.63 |
Hazards | |
Main hazards | Irritant |
Safety data sheet | [1] |
NFPA 704 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
1000 mg/kg (rat, oral) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
β-Alanine (or beta-alanine) is a naturally occurring beta amino acid, which is an amino acid in which the amino group is at the β-position from the carboxylate group (i.e., two atoms away, see Figure 1). The IUPAC name for β-alanine is 3-aminopropanoic acid. Unlike its counterpart α-alanine, β-alanine has no stereocenter.
β-Alanine is not used in the biosynthesis of any major proteins or enzymes. It is formed in vivo by the degradation of dihydrouracil and carnosine. It is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (vitamin B5), which itself is a component of coenzyme A. Under normal conditions, β-alanine is metabolized into acetic acid.
β-Alanine is the rate-limiting precursor of carnosine, which is to say carnosine levels are limited by the amount of available β-alanine, not histidine. Supplementation with β-alanine has been shown to increase the concentration of carnosine in muscles, decrease fatigue in athletes and increase total muscular work done. Simply supplementing with carnosine is not as effective as supplementing with β-alanine alone since carnosine, when taken orally, is broken down during digestion to its components, histidine and β-alanine. Hence, by weight, only about 40% of the dose is available as β-alanine.
L-Histidine, with a pKa of 6.1 is a relatively weak buffer over the physiological intramuscular pH range. However, when bound to other amino acids, this increases nearer to 6.8-7.0. In particular, when bound to β-alanine, the pKa value is 6.83, making this a very efficient intramuscular buffer. Furthermore, because of the position of the beta amino group, β-alanine dipeptides are not incorporated into proteins, and thus can be stored at relatively high concentrations (millimolar). Occurring at 17–25 mmol/kg (dry muscle), carnosine (β-alanyl-L-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.