Satellite imagery are images of Earth or other planets collected by Imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell images by licensing them to governments and businesses such as Apple Maps and Google Maps.
The first images from space were taken on sub-orbital flights. The U.S-launched V-2 flight on October 24, 1946 took one image every 1.5 seconds. With an apogee of 65 miles (105Â km), these photos were from five times higher than the previous record, the 13.7 miles (22Â km) by the Explorer II balloon mission in 1935. The first satellite (orbital) photographs of Earth were made on August 14, 1959 by the U.S. Explorer 6. The first satellite photographs of the Moon might have been made on October 6, 1959 by the Soviet satellite Luna 3, on a mission to photograph the far side of the Moon. The Blue Marble photograph was taken from space in 1972, and has become very popular in the media and among the public. Also in 1972 the United States started the Landsat program, the largest program for acquisition of imagery of Earth from space. Landsat Data Continuity Mission, the most recent Landsat satellite, was launched on 11 February 2013. In 1977, the first real time satellite imagery was acquired by the United States's KH-11 satellite system.
All satellite images produced by NASA are published by NASA Earth Observatory and are freely available to the public. Several other countries have satellite imaging programs, and a collaborative European effort launched the ERS and Envisat satellites carrying various sensors. There are also private companies that provide commercial satellite imagery. In the early 21st century satellite imagery became widely available when affordable, easy to use software with access to satellite imagery databases was offered by several companies and organizations.
- spatial resolution is defined as the pixel size of an image representing the size of the surface area (i.e. m2) being measured on the ground, determined by the sensors' instantaneous field of view (IFOV);
- spectral resolution is defined by the wavelength interval size (discrete segment of the Electromagnetic Spectrum) and number of intervals that the sensor is measuring;
- temporal resolution is defined by the amount of time (e.g. days) that passes between imagery collection periods for a given surface location
- Radiometric resolution is defined as the ability of an imaging system to record many levels of brightness (contrast for example) and to the effective bit-depth of the sensor (number of grayscale levels) and is typically expressed as 8-bit (0-255), 11-bit (0-2047), 12-bit (0-4095) or 16-bit (0-65,535).
- Geometric resolution refers to the satellite sensor's ability to effectively image a portion of the Earth's surface in a single pixel and is typically expressed in terms of Ground sample distance, or GSD. GSD is a term containing the overall optical and systemic noise sources and is useful for comparing how well one sensor can "see" an object on the ground within a single pixel. For example, the GSD of Landsat is ~30m, which means the smallest unit that maps to a single pixel within an image is ~30m x 30m. The latest commercial satellite (GeoEye 1) has a GSD of 0.41 m. This compares to a 0.3 m resolution obtained by some early military film based Reconnaissance satellite such as Corona.
- Land surface climatology—investigation of land surface parameters, surface temperature, etc., to understand land-surface interaction and energy and moisture fluxes
- Vegetation and ecosystem dynamics—investigations of vegetation and soil distribution and their changes to estimate biological productivity, understand land-atmosphere interactions, and detect ecosystem change
- Volcano monitoring—monitoring of eruptions and precursor events, such as gas emissions, eruption plumes, development of lava lakes, eruptive history and eruptive potential
- Hazard monitoring—observation of the extent and effects of wildfires, flooding, coastal erosion, earthquake damage, and tsunami damage
- Hydrology—understanding global energy and hydrologic processes and their relationship to global change; included is evapotranspiration from plants
- Geology and soils—the detailed composition and geomorphologic mapping of surface soils and bedrocks to study land surface processes and earth's history
- Land surface and land cover change—monitoring desertification, deforestation, and urbanization; providing data for conservation managers to monitor protected areas, national parks, and wilderness areas
- The Meteosat visible and infrared imager (MVIRI), three-channel imager: visible, infrared and water vapour; It operates on the first generation Meteosat, Meteosat-7 being still active.
- The 12-channel Spinning Enhanced Visible and Infrared Imager (SEVIRI) includes similar channels to those used by MVIRI, providing continuity in climate data over three decades; Meteosat Second Generation (MSG).
- The Flexible Combined Imager (FCI) on Meteosat Third Generation (MTG) will also include similar channels, meaning that all three generations will have provided over 60 years of climate data.