Don't miss the special BONUS offer during our Beta-test period. The next 100 new Registered Users (from a unique IP address), to post at least five (5) piglix, will receive 1,000 extra sign-up points (eventually exchangeable for crypto-currency)!

* * * * *    Free Launch Promotions    * * * * *

  • Free Ads! if you are a small business with annual revenues of less than $1M - will place your ads free of charge for up to one year! ... read more

  • $2,000 in free prizes! is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details

Mathe Forum Schule und Studenten
0 votes

A face recognition system is a computer application capable of identifying or verifying a person from a digital image or a video frame from a video source. One of the ways to do this is by comparing selected facial features from the image and a face database.

It is typically used in security systems and can be compared to other biometrics such as fingerprint or eye iris recognition systems. Recently, it has also become popular as a commercial identification and marketing tool.

Some face recognition algorithms identify facial features by extracting landmarks, or features, from an image of the subject's face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. These features are then used to search for other images with matching features. Other algorithms normalize a gallery of face images and then compress the face data, only saving the data in the image that is useful for face recognition. A probe image is then compared with the face data. One of the earliest successful systems is based on template matching techniques applied to a set of salient facial features, providing a sort of compressed face representation.

Recognition algorithms can be divided into two main approaches, geometric, which looks at distinguishing features, or photometric, which is a statistical approach that distills an image into values and compares the values with templates to eliminate variances.

Popular recognition algorithms include principal component analysis using eigenfaces, linear discriminant analysis, elastic bunch graph matching using the Fisherface algorithm, the hidden Markov model, the multilinear subspace learning using tensor representation, and the neuronal motivated dynamic link matching.



piglix posted in Science other by Galactic Guru
Share this piglix:    


Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.