*** Welcome to piglix ***

Z-order (curve)


In mathematical analysis and computer science, Z-order, Lebesgue curve, Morton order or Morton code is a function which maps multidimensional data to one dimension while preserving locality of the data points. It was introduced in 1966 by Guy Macdonald Morton. The z-value of a point in multidimensions is simply calculated by interleaving the binary representations of its coordinate values. Once the data are sorted into this ordering, any one-dimensional data structure can be used such as binary search trees, B-trees, skip lists or (with low significant bits truncated) hash tables. The resulting ordering can equivalently be described as the order one would get from a depth-first traversal of a quadtree.

The figure below shows the Z-values for the two dimensional case with integer coordinates 0 ≤ x ≤ 7, 0 ≤ y ≤ 7 (shown both in decimal and binary). Interleaving the binary coordinate values yields binary z-values as shown. Connecting the z-values in their numerical order produces the recursively Z-shaped curve. Two-dimensional Z-values are also called as quadkey ones.

The Z-values of x's are described as binary numbers from the Moser–de Bruijn sequence, having nonzero bits only in their even positions:

The sum and difference of two x's are calculated by using bitwise operations:

The Z-ordering can be used to efficiently build a quadtree for a set of points. The basic idea is to sort the input set according to Z-order. Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, or they can be used to build a pointer based quadtree.

The input points are usually scaled in each dimension to be positive integers, either as a fixed point representation over the unit range [0, 1] or corresponding to the machine word size. Both representations are equivalent and allow for the highest order non-zero bit to be found in constant time. Each square in the quadtree has a side length which is a power of two, and corner coordinates which are multiples of the side length. Given any two points, the derived square for the two points is the smallest square covering both points. The interleaving of bits from the x and y components of each point is called the shuffle of x and y, and can be extended to higher dimensions.


...
Wikipedia

...