In chemistry, yield, also referred to as reaction yield, is the amount of product obtained in a chemical reaction. The absolute yield can be given as the weight in grams or in moles (molar yield). The percentage yield (or fractional yield or relative yield), which serves to measure the effectiveness of a synthetic procedure, is calculated by dividing the amount of the obtained desired product by the theoretical yield (the unit of measure for both must be the same):
The theoretical yield is the amount predicted by a stoichiometric calculation based on the number of moles of all reactants present. This calculation assumes that only one reaction occurs and that the limiting reactant reacts completely. However the actual yield is very often smaller (the percent yield is less than 100%) for several reasons:
The ideal or theoretical yield of a chemical reaction would be 100%. According to Vogel's Textbook of Practical Organic Chemistry, yields around 100% are called quantitative, yields above 90% are called excellent, yields above 80% are very good, yields above 70% are good, yields above 50% are fair, and yields below 40% are called poor. These names are arbitrary and not universally accepted, and depending on the nature of the reaction in question, these expectations may be unrealistically high. Yields may appear to be above 100% when products are impure, as the measured weight of the product will include the weight of any impurities.
Purification steps always lower the yield, through losses incurred during the transfer of material between reaction vessels and purification apparatus or imperfect separation of the product from impurities, which may necessitate the discarding of fractions deemed insufficiently pure. The yield of the product measured after purification (typically to >95% spectroscopic purity, or to sufficient purity to pass combustion analysis) is called the isolated yield of the reaction. Yields can also be calculated by measuring the amount of product formed (typically in the crude, unpurified product) relative to a known amount of an added internal standard, using techniques like gas / liquid chromatography, or NMR spectroscopy. A yield determined using this approach is known as an internal standard yield. Yields are typically obtained in this manner to accurately determine the quantity of product produced by a reaction, irrespective of potential isolation problems. Additionally, they can be useful when isolation of the product is challenging or tedious, or when the rapid determination of an approximate yield is desired. Unless otherwise indicated, yields reported in the synthetic organic and inorganic chemistry literature refer to isolated yields, which better reflects the amount of pure product one is likely to obtain under the reported conditions, upon repeating the experimental procedure.