In gravitation theory, a world manifold endowed with some Lorentzian pseudo-Riemannian metric and an associated space-time structure is a space-time. Gravitation theory is formulated as classical field theory on natural bundles over a world manifold.
A world manifold is a four-dimensional orientable real smooth manifold. It is assumed to be a Hausdorff and second countable topological space. Consequently, it is a locally compact space which is a union of a countable number of compact subsets, a separable space, a paracompact and completely regular space. Being paracompact, a world manifold admits a partition of unity by smooth functions. It should be emphasized that paracompactness is an essential characteristic of a world manifold. It is necessary and sufficient in order that a world manifold admits a Riemannian metric and necessary for the existence of a pseudo-Riemannian metric. A world manifold is assumed to be connected and, consequently, it is arcwise connected.
The tangent bundle of a world manifold and the associated principal frame bundle of linear tangent frames in possess a general linear group structure group . A world manifold is said to be parallelizable if the tangent bundle and, accordingly, the frame bundle are trivial, i.e., there exists a global section (a frame field) of . It is essential that the tangent and associated bundles over a world manifold admit a bundle atlas of finite number of trivialization charts.