*** Welcome to piglix ***

Paracompact space


In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

Every closed subspace of a paracompact space is paracompact. While compact subsets of Hausdorff spaces are always closed, this is not true for paracompact subsets. A space such that every subspace of it is a paracompact space is called hereditarily paracompact. This is equivalent to requiring that every open subspace be paracompact.

Tychonoff's theorem (which states that the product of any collection of compact topological spaces is compact) does not generalize to paracompact spaces in that the product of paracompact spaces need not be paracompact. However, the product of a paracompact space and a compact space is always paracompact.

Every metric space is paracompact. A topological space is metrizable if and only if it is a paracompact and locally metrizable Hausdorff space.

A cover of a set X is a collection of subsets of X whose union contains X. In symbols, if U = {Uα : α in A} is an indexed family of subsets of X, then U is a cover of X if


...
Wikipedia

...