*** Welcome to piglix ***

Work-energy theorem

Work
Baseball pitching motion 2004.jpg
A baseball pitcher does positive work on the ball by applying a force to it over the distance it moves while in his grip.
Common symbols
W
SI unit joule (J)
In SI base units 1 kgm2/s2
Derivations from
other quantities

W = Fs

W = τ θ

W = Fs

In physics, a force is said to do work if, when acting, there is a displacement of the point of application in the direction of the force. For example, when a ball is held above the ground and then dropped, the work done on the ball as it falls is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement).

Work transfers energy from one place to another or one form to another.

The term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. The SI unit of work is the joule (J).

The SI unit of work is the joule (J), which is defined as the work expended by a force of one newton through a displacement of one metre.

The dimensionally equivalent newton-metre (N⋅m) is sometimes used as the measuring unit for work, but this can be confused with the unit newton-metre, which is the measurement unit of torque. Usage of N⋅m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton metres is a torque measurement, or a measurement of work.

Non-SI units of work include the erg, the foot-pound, the foot-poundal, the kilowatt hour, the litre-atmosphere, and the horsepower-hour. Due to work having the same physical dimension as heat, occasionally measurement units typically reserved for heat or energy content, such as therm, BTU and Calorie, are utilized as a measuring unit.


...
Wikipedia

...