*** Welcome to piglix ***

Wollastonite

Wollastonite
WollastoniteUSGOV.jpg
General
Category Silicate mineral
Formula
(repeating unit)
Calcium silicate, CaSiO3
Strunz classification 9.DG.05
Crystal system Triclinic
Monoclinic polytype exists
Crystal class Pinacoidal (1)
(same H-M symbol)
Space group P1 (1A polytype)
Unit cell a = 7.925 Å, b = 7.32 Å,
c = 7.065 Å; α = 90.055°,
β = 95.217°, γ = 103.42°; Z = 6
Identification
Color White, colorless or gray
Crystal habit Rare as tabular crystals—commonly massive in lamellar, radiating, compact and fibrous aggregates.
Twinning Common
Cleavage Perfect in two directions at near 90°
Fracture Splintery to uneven
Mohs scale hardness 4.5 to 5.0
Luster Vitreous or dull to pearly on cleavage surfaces
Streak White
Diaphaneity Transparent to translucent
Specific gravity 2.86–3.09
Optical properties Biaxial (-)
Refractive index nα = 1.616–1.640
nβ = 1.628–1.650
nγ = 1.631–1.653
Birefringence δ = 0.015 max
2V angle Measured: 36° to 60°
Melting point 1540 °C
Solubility Soluble in HCl, insoluble in water
References

Wollastonite is a calcium inosilicate mineral (CaSiO3) that may contain small amounts of iron, magnesium, and manganese substituting for calcium. It is usually white. It forms when impure limestone or dolostone is subjected to high temperature and pressure sometimes in the presence of silica-bearing fluids as in skarns or contact metamorphic rocks. Associated minerals include garnets, vesuvianite, diopside, tremolite, epidote, plagioclase feldspar, pyroxene and calcite. It is named after the English chemist and mineralogist William Hyde Wollaston (1766–1828).

Some of the properties that make wollastonite so useful are its high brightness and whiteness, low moisture and oil absorption, and low volatile content. Wollastonite is used primarily in ceramics, friction products (brakes and clutches), metalmaking, paint filler, and plastics.

Despite its chemical similarity to the compositional spectrum of the pyroxene group of minerals—where magnesium and iron substitution for calcium ends with diopside and hedenbergite respectively—it is structurally very different, with a third SiO4 tetrahedron in the linked chain (as opposed to two in the pyroxenes).


...
Wikipedia

...