*** Welcome to piglix ***

Wigner energy


The Wigner effect (named for its discoverer, Eugene Wigner), also known as the discomposition effect or Wigner's Disease, is the displacement of atoms in a solid caused by neutron radiation.

Any solid can display the Wigner effect. The effect is of most concern in neutron moderators, such as graphite, intended to reduce the speed of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235.

To create the Wigner effect, neutrons that collide with the atoms in a crystal structure must have enough energy to displace them from the lattice. This amount (threshold displacement energy) is approximately 25 eV. A neutron's energy can vary widely, but it is not uncommon to have energies up to and exceeding 10 MeV (10,000,000 eV) in the centre of a nuclear reactor. A neutron with a significant amount of energy will create a displacement cascade in a matrix via elastic collisions. For example, a 1 MeV neutron striking graphite will create 900 displacements; however, not all displacements will create defects, because some of the struck atoms will find and fill the vacancies that were either small pre-existing voids or vacancies newly formed by the other struck atoms.

The atoms that do not find a vacancy come to rest in non-ideal locations; that is, not along the symmetrical lines of the lattice. These atoms are referred to as interstitial atoms, or simply interstitials. An interstitial atom and its associated vacancy are known as a Frenkel defect. Because these atoms are not in the ideal location, they have an energy associated with them, much as a ball at the top of a hill has gravitational potential energy. This energy is referred to as Wigner energy. When a large number of interstitials have accumulated, they pose a risk of releasing all of their energy suddenly, creating a rapid, very great increase in temperature. Sudden, unplanned increases in temperature can present a large risk for certain types of nuclear reactors with low operating temperatures; one such was the indirect cause of the Windscale fire. Accumulation of energy in irradiated graphite has been recorded as high as 2.7 kJ/g, but is typically much lower than this. Graphite, having a heat capacity of 0.720 J/g°C, could see a sudden increase in temperature of about 3750 °C (6780 °F).


...
Wikipedia

...