*** Welcome to piglix ***

Whitehead's theorem


In homotopy theory (a branch of mathematics), the Whitehead theorem states that if a continuous mapping f between CW complexes X and Y induces isomorphisms on all homotopy groups, then f is a homotopy equivalence. This result was proved by J. H. C. Whitehead in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of algebraic topology, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a geometric property of a mapping.

In more detail, let X and Y be topological spaces. Given a continuous mapping

and a point x in X, consider for any n ≥ 1 the induced homomorphism

where πn(X,x) denotes the n-th homotopy group of X with base point x. (For n = 0, π0(X) just means the set of path components of X.) A map f is a weak homotopy equivalence if the function

is bijective, and the homomorphisms f* are bijective for all x in X and all n ≥ 1. (For X and Y path-connected, the first condition is automatic, and it suffices to state the second condition for a single point x in X.) The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: XY has a homotopy inverse g: YX, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes.


...
Wikipedia

...