*** Welcome to piglix ***

Path component


In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint nonempty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.

A subset of a topological space X is a connected set if it is a connected space when viewed as a subspace of X.

A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.

For a topological space X the following conditions are equivalent:

The maximal connected subsets (ordered by inclusion) of a nonempty topological space are called the connected components of the space. The components of any topological space X form a partition of X: they are disjoint, nonempty, and their union is the whole space. Every component is a closed subset of the original space. It follows that, in the case where their number is finite, each component is also an open subset. However, if their number is infinite, this might not be the case; for instance, the connected components of the set of the rational numbers are the one-point sets (singletons), which are not open.


...
Wikipedia

...