*** Welcome to piglix ***

Whirlwind (computer)

Whirlwind I
military computer
Museum of Science, Boston, MA - IMG 3168.JPG
Whirlwind computer elements: core memory (left) and operator console
Country United States
State Massachusetts
Part of "Whirlwind Program"/"Whirlwind Project"
Location MIT's Barta Building (now building N42)
211 Massachusetts Ave, Cambridge MA
Design
Built
tbd-1947
1948-April 20, 1951

Whirlwind I was a Cold War-era vacuum tube computer developed by the MIT Servomechanisms Laboratory for the U.S. Navy. It was amongst the first digital electronic computers that operated in real-time for output, and the first that was not simply an electronic replacement of older mechanical systems.

It was one of the first computers to calculate in parallel (rather than serial), and was the first to use magnetic core memory.

Its development led directly to the Whirlwind II design used as the basis for the United States Air Force SAGE air defense system, and indirectly to almost all business computers and minicomputers in the 1960s.

During World War II, the U.S. Navy approached MIT about the possibility of creating a computer to drive a flight simulator for training bomber crews. They envisioned a fairly simple system in which the computer would continually update a simulated instrument panel based on control inputs from the pilots. Unlike older systems like the Link Trainer, the system they envisioned would have a considerably more realistic aerodynamics model that could be adapted to any type of plane. This was an important consideration at the time, when many new designs were being introduced into service.

The Servomechanisms Lab in MIT building 32 conducted a short survey that concluded such a system was possible. The Navy decided to fund development under Project Whirlwind, and the lab placed Jay Forrester in charge of the project. They soon built a large analog computer for the task, but found that it was inaccurate and inflexible. Solving these problems in a general way would require a much larger system, perhaps one so large as to be impossible to construct.

In 1945, Perry Crawford, another member of the MIT team, saw a demonstration of ENIAC and suggested that a digital computer was the solution. Such a machine would allow the accuracy of the simulation to be improved with the addition of more code in the computer program, as opposed to adding parts to the machine. As long as the machine was fast enough, there was no theoretical limit to the complexity of the simulation.


...
Wikipedia

...