*** Welcome to piglix ***

Where Mathematics Comes From

Where Mathematics Comes From
Where Mathematics Comes From.jpg
Author George Lakoff
Rafael E. Núñez
Subject Numerical cognition
Published 2000
Pages 492
ISBN
OCLC 44045671

Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being (hereinafter WMCF) is a book by George Lakoff, a cognitive linguist, and Rafael E. Núñez, a psychologist. Published in 2000, WMCF seeks to found a cognitive science of mathematics, a theory of embodied mathematics based on conceptual metaphor.

Mathematics makes up that part of the human conceptual system that is special in the following way:

Nikolay Lobachevsky said "There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world." A common type of conceptual blending process would seem to apply to the entire mathematical procession.

Lakoff and Núñez's avowed purpose is to begin laying the foundations for a truly scientific understanding of mathematics, one grounded in processes common to all human cognition. They find that four distinct but related processes metaphorically structure basic arithmetic: object collection, object construction, using a measuring stick, and moving along a path.

WMCF builds on earlier books by Lakoff (1987) and Lakoff and Johnson (1980, 1999), which analyze such concepts of metaphor and image schemata from second-generation cognitive science. Some of the concepts in these earlier books, such as the interesting technical ideas in Lakoff (1987), are absent from WMCF.

Lakoff and Núñez hold that mathematics results from the human cognitive apparatus and must therefore be understood in cognitive terms. WMCF advocates (and includes some examples of) a cognitive idea analysis of mathematics which analyzes mathematical ideas in terms of the human experiences, metaphors, generalizations, and other cognitive mechanisms giving rise to them. A standard mathematical education does not develop such idea analysis techniques because it does not pursue considerations of A) what structures of the mind allow it to do mathematics or B) the philosophy of mathematics.


...
Wikipedia

...