Wells Gray-Clearwater volcanic field | |
---|---|
A view from Green Mountain with Pyramid Mountain in the distance
|
|
Highest point | |
Elevation | 2,100 m (6,900 ft) |
Coordinates | 52°20′N 120°34′W / 52.33°N 120.57°W |
Geography | |
Location | British Columbia, Canada |
Parent range | Quesnel Highland/Shuswap Highland/Cariboo Mountains |
Geology | |
Age of rock | Pliocene-to-Holocene |
Mountain type | Monogenetic volcanic field |
Last eruption | 1550 (?) |
The Wells Gray-Clearwater volcanic field, also called the Clearwater Cone Group, is a potentially activemonogenetic volcanic field in east-central British Columbia, Canada, located approximately 130 km (81 mi) north of Kamloops. It is situated in the Cariboo Mountains of the Columbia Mountains and on the Quesnel and Shuswap Highlands. As a monogenetic volcanic field, it is a place with numerous small basaltic volcanoes and extensive lava flows.
Most of the Wells Gray-Clearwater volcanic field is encompassed within a large wilderness park called Wells Gray Provincial Park. This 5,405 km2 (2,087 sq mi) park was established in 1939 to protect Helmcken Falls and the unique features of the Clearwater River drainage basin, including this volcanic field. Five roads enter the park and provide views of some of the field's volcanic features. Short hikes lead to several other volcanic features, but some areas are accessible only by aircraft.
Based on radiocarbon and potassium-argon dating, volcanic activity in the Wells Gray-Clearwater volcanic field began in the early epoch, creating valley-filling and plateau-capping lava flows that have a total volume of approximately 25 km3 (6 cu mi). The emplacement of these lava flows spanned at least three periods of glaciation, evidence for which is preserved in the form of tuyas, ice-ponded valley deposits, and subglacial mounds. The few tuyas in the region, such as Gage Hill, Hyalo Ridge, McLeod Hill and Mosquito Mound, were formed when magma intruded into and melted a vertical pipe in the overlying glacial ice. The partially molten mass cooled as a large block, with gravity flattening its upper surface. The glacial erosion of the tuyas suggests they erupted during the early Pleistocene epoch.