*** Welcome to piglix ***

Wavelength Division Multiplexing


In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e., colors) of laser light. This technique enables bidirectional communications over one strand of fiber, as well as multiplication of capacity.

The term wavelength-division multiplexing is commonly applied to an optical carrier, which is typically described by its wavelength, whereas frequency-division multiplexing typically applies to a radio carrier which is more often described by frequency. This is purely convention because wavelength and frequency communicate the same information.

A WDM system uses a multiplexer at the transmitter to join the several signals together, and a demultiplexer at the receiver to split them apart. With the right type of fiber it is possible to have a device that does both simultaneously, and can function as an optical add-drop multiplexer. The optical filtering devices used have conventionally been etalons (stable solid-state single-frequency Fabry–Pérot interferometers in the form of thin-film-coated optical glass). As there are three different WDM types, whereof one is called "WDM", the notation "xWDM" is normally used when discussing the technology as such.

The concept was first published in 1978, and by 1980 WDM systems were being realized in the laboratory. The first WDM systems combined only two signals. Modern systems can handle 160 signals and can thus expand a basic 100 Gbit/s system over a single fiber pair to over 16 Tbit/s. A system of 320 channels is also present (12.5 GHz channel spacing, see below.)


...
Wikipedia

...