*** Welcome to piglix ***

Visual odometry


In robotics and computer vision, visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of robotic applications, such as on the Mars Exploration Rovers.

In navigation, odometry is the use of data from the movement of actuators to estimate change in position over time through devices such as rotary encoders to measure wheel rotations. While useful for many wheeled or tracked vehicles, traditional odometry techniques cannot be applied to mobile robots with non-standard locomotion methods, such as legged robots. In addition, odometry universally suffers from precision problems, since wheels tend to slip and slide on the floor creating a non-uniform distance traveled as compared to the wheel rotations. The error is compounded when the vehicle operates on non-smooth surfaces. Odometry readings become increasingly unreliable over time as these errors accumulate and compound over time.

Visual odometry is the process of determining equivalent odometry information using sequential camera images to estimate the distance traveled. Visual odometry allows for enhanced navigational accuracy in robots or vehicles using any type of locomotion on any surface.

Most existing approaches to visual odometry are based on the following stages.

An alternative to feature-based methods is the "direct" or appearance-based visual odometry technique which minimizes an error directly in sensor space and subsequently avoids feature matching and extraction.

Another method, coined 'visiodometry' estimates the planar roto-translations between images using Phase correlation instead of extracting features.

Egomotion is defined as the 3D motion of a camera within an environment. In the field of computer vision, egomotion refers to estimating a camera's motion relative to a rigid scene. An example of egomotion estimation would be estimating a car's moving position relative to lines on the road or street signs being observed from the car itself. The estimation of egomotion is important in autonomous robot navigation applications.

The goal of estimating the egomotion of a camera is to determine the 3D motion of that camera within the environment using a sequence of images taken by the camera. The process of estimating a camera's motion within an environment involves the use of visual odometry techniques on a sequence of images captured by the moving camera. This is typically done using feature detection to construct an optical flow from two image frames in a sequence generated from either single cameras or stereo cameras. Using stereo image pairs for each frame helps reduce error and provides additional depth and scale information.


...
Wikipedia

...