Virulence can have two different meanings depending on the context. In the context of gene for gene systems, often in plants, virulence refers to a pathogen's ability to infect a resistant host. In most other contexts, especially in animal systems, virulence refers to the degree of damage caused by a microbe to its host. The pathogenicity of an organism - its ability to cause disease - is determined by its virulence factors. The noun virulence derives from the adjective virulent. Virulent can describe either disease severity or a pathogen's infectivity. The word virulent derives from the Latin word virulentus, meaning "a poisoned wound" or "full of poison."
In an ecological context, virulence can be defined as the host's parasite-induced loss of fitness. Virulence can be understood in terms of proximate causes—those specific traits of the pathogen that help make the host ill—and ultimate causes—the evolutionary pressures that lead to virulent traits occurring in a pathogen strain.
The ability of bacteria to cause disease is described in terms of the number of infecting bacteria, the route of entry into the body, the effects of host defense mechanisms, and intrinsic characteristics of the bacteria called virulence factors. Many virulence factors are so-called effector proteins that are injected into the host cells by special secretion machines such as the type 3 secretion system. Host-mediated pathogenesis is often important because the host can respond aggressively to infection with the result that host defense mechanisms do damage to host tissues while the infection is being countered.
The virulence factors of bacteria are typically proteins or other molecules that are synthesized by enzymes. These proteins are coded for by genes in chromosomal DNA, bacteriophage DNA or plasmids. Certain bacteria employ mobile genetic elements and horizontal gene transfer. Therefore, strategies to combat certain bacterial infections by targeting these specific virulence factors and mobile genetic elements have been proposed. Bacteria use quorum sensing to synchronise release of the molecules. These are all proximate causes of morbidity in the host.