*** Welcome to piglix ***

Vestibulo-ocular reflex


The vestibulo-ocular reflex (VOR) is a reflex, where activation of the vestibular system causes eye movement. This reflex functions to stabilize images on the retinas (in yoked vision) during head movement by producing eye movements in the direction opposite to head movement, thus preserving the image on the center of the visual field(s). For example, when the head moves to the right, the eyes move to the left, and vice versa. Since slight head movement is present all the time, the VOR is very important for stabilizing vision: patients whose VOR is impaired find it difficult to read using print, because they cannot stabilize the eyes during small head tremors, and also because damage to the VOR can cause vestibular nystagmus.

The VOR does not depend on visual input. It can be elicited by caloric (hot or cold) stimulation of the inner ear, and works even in total darkness or when the eyes are closed. However, in the presence of light, the fixation reflex is also added to the movement.

In other animals, the gravity organs and eyes are strictly connected. A fish, for instance, moves its eyes by reflex when its tail is moved. Humans have semicircular canals, neck muscle "stretch" receptors, and the utricle (gravity organ). Though the semicircular canals cause most of the reflexes which are responsive to acceleration, the maintaining of balance is mediated by the stretch of neck muscles and the pull of gravity on the utricle (otolith organ) of the inner ear.

The VOR has both rotational and translational aspects. When the head rotates about any axis (horizontal, vertical, or torsional) distant visual images are stabilized by rotating the eyes about the same axis, but in the opposite direction. When the head translates, for example during walking, the visual fixation point is maintained by rotating gaze direction in the opposite direction, by an amount that depends on distance.

The VOR is ultimately driven by signals from the vestibular apparatus in the inner ear. The semicircular canals detect head rotation and drive the rotational VOR, whereas the otoliths detect head translation and drive the translational VOR. The main "direct path" neural circuit for the horizontal rotational VOR is fairly simple. It starts in the vestibular system, where semicircular canals get activated by head rotation and send their impulses via the vestibular nerve (cranial nerve VIII) through Scarpa's ganglion and end in the vestibular nuclei in the brainstem. From these nuclei, fibers cross to the contralateral cranial nerve VI nucleus (abducens nucleus). There they synapse with 2 additional pathways. One pathway projects directly to the lateral rectus of eye via the abducens nerve. Another nerve tract projects from the abducens nucleus by the medial longitudinal fasciculus to the contralateral oculomotor nucleus, which contains motorneurons that drive eye muscle activity, specifically activating the medial rectus muscle of the eye through the oculomotor nerve.


...
Wikipedia

...