*** Welcome to piglix ***

Vesicular transport adaptor protein


Vesicular transport adaptor proteins are proteins involved in forming complexes that function in the trafficking of molecules from one subcellular location to another. These complexes concentrate the correct cargo molecules in vesicles that bud or extrude off of one organelle and travel to another location, where the cargo is delivered. While some of the details of how these adaptor proteins achieve their trafficking specificity has been worked out, there is still much to be learned.

There are several human disorders associated with defects in components of these complexes including Alzheimer's and Parkinson's diseases.

Most of the adaptor proteins are heterotetramers. In the AP complexes, there are 2 large(100 kD) and 2 smaller proteins. One of the large proteins is termed β (beta), with β1 in the AP-1 complex, β2 in the AP-2 complex, and so on. The other large protein has different designations in the different complexes. In AP-1 it is named γ (gamma), AP-2 has α (alpha), AP-3 has δ (delta), AP-4 has ε (epsilon) and AP-5 has ζ (zeta). The 2 smaller proteins are a medium subunit named μ (mu ∼50 kD) and a small subunit σ (sigma ∼20 kD), and named 1 through 5 corresponding to the 5 AP complexes. Components of COPI and TSET complexes are similar to the heterotetramers of the AP complexes.

Retromer is not closely related, has been reviewed, and its proteins will not be described here. GGAs (Golgi-localising, Gamma-adaptin ear domain homology, ARF-binding proteins) are a group of related proteins (three in humans) that act as monomeric clathrin adaptor proteins in various important membrane vesicle traffickings, but are not similar to any of the AP complexes and will not be discussed in detail in this article. Stonins (not shown in the lead figure) are also monomers similar in some regards to GGA and will also not be discussed in detail in this article.


...
Wikipedia

...