Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. One contribution to the vacuum energy may be from virtual particles which are thought to be particle pairs that blink into existence and then annihilate in a timespan too short to observe. Their behavior is codified in Heisenberg's energy–time uncertainty principle. Still, the exact effect of such fleeting bits of energy is difficult to quantify. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.
The effects of vacuum energy can be experimentally observed in various phenomena such as spontaneous emission, the Casimir effect and the Lamb shift, and are thought to influence the behavior of the Universe on cosmological scales. Using the upper limit of the cosmological constant, the vacuum energy of free space has been estimated to be 10−9joules (10−2ergs) per cubic meter. However, in both quantum electrodynamics (QED) and (SED), consistency with the principle of Lorentz covariance and with the magnitude of the Planck constant requires it to have a much larger value of 10113 joules per cubic meter. This huge discrepancy is known as the vacuum catastrophe.
Quantum field theory states that all fundamental fields, such as the electromagnetic field, must be quantized at each and every point in space. A field in physics may be envisioned as if space were filled with interconnected vibrating balls and springs, and the strength of the field were like the displacement of a ball from its rest position. The theory requires "vibrations" in, or more accurately changes in the strength of, such a field to propagate as per the appropriate wave equation for the particular field in question. The second quantization of quantum field theory requires that each such ball-spring combination be quantized, that is, that the strength of the field be quantized at each point in space. Canonically, if the field at each point in space is a simple harmonic oscillator, its quantization places a quantum harmonic oscillator at each point. Excitations of the field correspond to the elementary particles of particle physics. Thus, according to the theory, even the vacuum has a vastly complex structure and all calculations of quantum field theory must be made in relation to this model of the vacuum.