In physics, the Lamb shift, named after Willis Lamb (1913–2008), is a difference in energy between two energy levels 2S1/2 and 2P1/2 (in term symbol notation) of the hydrogen atom which was not predicted by the Dirac equation, according to which these states should have the same energy.
Interaction between vacuum energy fluctuations and the hydrogen electron in these different orbitals is the cause of the Lamb shift, as was shown subsequent to its discovery. The Lamb shift has since played a significant role through its validation of vacuum energy fluctuations in the discovery of Hawking radiation from black holes.
This effect was first measured in 1947 in the Lamb–Retherford experiment on the hydrogen microwave spectrum and this measurement provided the stimulus for renormalization theory to handle the divergences. It was the harbinger of modern quantum electrodynamics developed by Julian Schwinger, Richard Feynman, Ernst Stueckelberg, Sin-Itiro Tomonaga and Freeman Dyson. Lamb won the Nobel Prize in Physics in 1955 for his discoveries related to the Lamb shift.
On Lamb's 65th birthday, Freeman Dyson addressed him as follows: "Those years, when the Lamb shift was the central theme of physics, were golden years for all the physicists of my generation. You were the first to see that this tiny shift, so elusive and hard to measure, would clarify our thinking about particles and fields."
This heuristic derivation of the electrodynamic level shift following Welton is from Quantum Optics.