*** Welcome to piglix ***

Universal C*-algebra


In mathematics, a universal C*-algebra is a C*-algebra described in terms of generators and relations. In contrast to rings or algebras, where one can consider quotients by free rings to construct universal objects, C*-algebras must be realizable as algebras of bounded operators on a Hilbert space by the Gelfand-Naimark-Segal construction and the relations must prescribe a uniform bound on the norm of each generator. This means that depending on the generators and relations, a universal C*-algebra may not exist. In particular, free C*-algebras do not exist.

There are several problems with defining relations for C*-algebras. One is, as previously mentioned, due to the non-existence of free C*-algebras, not every relation defines a C*-algebra. Another problem is that one would often want to include order relations, formulas involving continuous functional calculus, and spectral data as relations. For that reason, we use a relatively roundabout way of defining C*-algebra relations. The basic motivation behind the following definitions is that we will define relations as the category of their representations.

Given a set X, the null C*-relation on X is the category with objects consisting of pairs (j, A), where A is a C*-algebra and j is a function from X to A and with morphisms from (j, A) to (k, B) consisting of *-homomorphisms φ from A to B satisfying φ ∘ j = k. A C*-relation on X is a full subcategory of satisfying:


...
Wikipedia

...