In mathematics, and more specifically in abstract algebra, an algebraic structure is a set (called carrier set or underlying set) with one or more finitary operations defined on it that satisfies a list of axioms.
Examples of algebraic structures include groups, rings, fields, and lattices. More complex structures can be defined by introducing multiple operations, different underlying sets, or by altering the defining axioms. Examples of more complex algebraic structures include vector spaces, modules, and algebras.
The properties of specific algebraic structures are studied in abstract algebra. The general theory of algebraic structures has been formalized in universal algebra. The language of category theory is used to express and study relationships between different classes of algebraic and non-algebraic objects. This is because it is sometimes possible to find strong connections between some classes of objects, sometimes of different kinds. For example, Galois theory establishes a connection between certain fields and groups: two algebraic structures of different kinds.
Addition and multiplication on numbers are the prototypical example of an operation that combines two elements of a set to produce a third. These operations obey several algebraic laws. For example, a+ (b + c) = (a + b) + c and a(bc) = (ab)c, both examples of the associative law. Also a + b = b + a, and ab = ba, the commutative law. Many systems studied by mathematicians have operations that obey some, but not necessarily all, of the laws of ordinary arithmetic. For example, rotations of objects in three-dimensional space can be combined by performing the first rotation and then applying the second rotation to the object in its new orientation. This operation on rotations obeys the associative law, but can fail the commutative law.