*** Welcome to piglix ***

Tropospheric Ozone


Ozone (O3) is a constituent of the troposphere (it is also an important constituent of some regions of the stratosphere commonly known as the ozone layer). The troposphere extends from the Earth's surface to between 12 and 20 kilometers above sea level and consists of many layers. Ozone is more concentrated above the mixing layer, or ground layer. Ground-level ozone, though less concentrated than ozone aloft, is more of a problem because of its health effects.

Photochemical and chemical reactions involving it drive many of the chemical processes that occur in the atmosphere by day and by night. At abnormally high concentrations brought about by human activities (largely incomplete combustion of fossil fuels, such as gasoline, diesel, etc.), it is a pollutant, and a constituent of smog. Many highly energetic reactions produce it, ranging from combustion to photocopying. Often laser printers will have a smell of ozone, which in high concentrations is toxic. Ozone is a powerful oxidizing agent readily reacting with other chemical compounds to make many possibly toxic oxides.

Tropospheric ozone is a greenhouse gas and initiates the chemical removal of methane and other hydrocarbons from the atmosphere. Thus, its concentration affects how long these compounds remain in the air.

Satellites are able to measure tropospheric ozone.[1][2] Measurements specifically of ground-level ozone require in situ monitoring technology.

The majority of tropospheric ozone formation occurs when nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs), react in the atmosphere in the presence of sunlight. NOx, CO, and VOCs are called ozone precursors. Motor vehicle exhaust, industrial emissions, and chemical solvents are the major anthropogenic sources of these chemicals. Another source is windshield washer fluid. Although these precursors often originate in urban areas, winds can carry NOx hundreds of kilometers, causing ozone formation to occur in less populated regions as well. Methane, a VOC whose atmospheric concentration has increased tremendously during the last century, contributes to ozone formation but on a global scale rather than in local or regional photochemical smog episodes. In situations where this exclusion of methane from the VOC group of substances is not obvious, the term Non-Methane VOC (NMVOC) is often used.


...
Wikipedia

...