*** Welcome to piglix ***

Trimethylarsine

Trimethylarsine
Structural formula of trimethylarsine with an implicit electron pair
Ball and stick model of trimethylarsine
Names
Preferred IUPAC name
Trimethanidoarsenic
Systematic IUPAC name
Trimethylarsane
Other names
Gosio gas
Identifiers
3D model (Jmol)
1730780
ChEBI
ChemSpider
ECHA InfoCard 100.008.925
EC Number 209-815-8
141657
MeSH Trimethylarsine
PubChem CID
RTECS number CH8800000
Properties
C3H9As
Molar mass 120.03 g·mol−1
Appearance Colourless liquid
Density 1.124 g cm−3
Melting point −87.3 °C (−125.1 °F; 185.8 K)
Boiling point 56 °C (133 °F; 329 K)
Slightly soluble
Solubility in other solvents organic solvents
Structure
Trigonal pyramidal
0.86 D
Hazards
Main hazards Flammable
Safety data sheet See: data page
External MSDS
R-phrases R23/25 R50/53
S-phrases (S1/2) S20/21 S28 S45 S60 S61
Flash point −25 °C (−13 °F; 248 K)
Related compounds
Related compounds
Cacodylic acid
Triphenylarsine
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Trimethylarsine (abbreviated TMA or TMAs) is the chemical compound with the formula (CH3)3As, commonly abbreviated AsMe3 or TMAs. This organic derivative of arsine has been used as a source of arsenic in microelectronics industry, a building block to other organoarsenic compounds, and serves as a ligand in coordination chemistry. It has distinct "garlic"-like smell. Trimethylarsine had been discovered as early as 1854.

As predicted by VSEPR theory, AsMe3 is a pyramidal molecule. The As-C distances average 1.519 Å, and the C-As-C angles are 91.83° This bond angle is a strong indication of a low, if any, hybridisation of the atomic orbitals, leaving the lone pair in the s-orbital buried in the inner regions of the arsenic atom, rather than pointing outward like the lone pair of the ammonia molecule.

Trimethylarsine can be prepared by treatment of arsenic oxide with trimethylaluminium:

Trimethylarsine is pyrophoric due to the exothermic nature of the following reaction, which initiates combustion:

Poisoning events due to a gas produced by certain microbes was assumed to be associated with the arsenic in paint. In 1893 the Italian physician Bartolomeo Gosio published his results on "Gosio gas" that was subsequently shown to contain trimethylarsine. Under wet conditions, the mold Scopulariopsis brevicaulis produces significant amounts of methyl arsines via methylation of arsenic-containing inorganic pigments, especially Paris green and Scheele's Green, which were once used in indoor wallpapers. Newer studies show that trimethylarsine has a low toxicity and could therefore not account for the death and the severe health problems observed in the 19th century.


...
Wikipedia

...