Trichrome staining is a histological staining method that uses two or more acid dyes in conjunction with a polyacid. Staining differentiates tissues by tinting them in contrasting colours. It increases the contrast of microscopic features in cells and tissues, which makes them easier to see when viewed through a microscope.
The word means "three colours". The first staining protocol that was described as "trichrome" was Mallory's trichrome stain, which differentially stained erythrocytes to an orange colour, muscle tissue to a red colur, and collagen to a blue colour. Some other trichrome staining protocols are the Masson's trichrome stain, Lillie's trichrome, and the Gömöri trichrome stain.
Without trichome staining, discerning one feature from another can be extremely difficult. Smooth muscle tissue, for example, is hard to differentiate from collagen. A trichrome stain can colour the muscle tissue red, and the collagen fibres green or blue. Liver biopsies may have fine collagen fibres between the liver cells, and the amount of collagen may be estimated based on the staining method. Trichrome methods are now used for differentiating muscle from collagen, pituitary alpha cells from beta cells, fibrin from collagen, and in fresh frozen muscle sections, among other applications. It helps in identifying increases in collagenous tissue (i.e., fibrotic changes) such as in liver cirrhosis and distinguishing tumours arising from muscle cells and fibroblasts.
Trichrome staining techniques employ two or more acid dyes. Normally acid dyes would stain the same basic proteins, but by applying them sequentially the staining pattern can be manipulated. A polyacid (such as phosphomolybdic acid or tungstophosphoric acid) is used to remove dye selectively. Polyacids are thought to behave as dyes with a high molecular weight: they displace easily removed dye from collagen.