A tree structure or tree diagram is a way of representing the hierarchical nature of a structure in a graphical form. It is named a "tree structure" because the classic representation resembles a tree, even though the chart is generally upside down compared to an actual tree, with the "root" at the top and the "leaves" at the bottom.
A tree structure is conceptual, and appears in several forms. For a discussion of tree structures in specific fields, see Tree (data structure) for computer science: insofar as it relates to graph theory, see tree (graph theory), or also tree (set theory). Other related pages are listed below.
The tree elements are called "nodes". The lines connecting elements are called "branches". Nodes without children are called leaf nodes, "end-nodes", or "leaves".
Every finite tree structure has a member that has no superior. This member is called the "root" or root node. The root is the starting node. But the converse is not true: infinite tree structures may or may not have a root node.
The names of relationships between nodes model the kinship terminology of family relations. The gender-neutral names "parent" and "child" have largely displaced the older "father" and "son" terminology, although the term "uncle" is still used for other nodes at the same level as the parent.
In the example, "encyclopedia" is the parent of "science" and "culture", its children. "Art" and "craft" are siblings, and children of "culture", which is their parent and thus one of their ancestors. Also, "encyclopedia", as the root of the tree, is the ancestor of "science", "culture", "art" and "craft". Finally, "science", "art" and "craft", as leaves, are ancestors of no other node.
Tree structures can depict all kinds of taxonomic knowledge, such as family trees, the biological evolutionary tree, the evolutionary tree of a language family, the grammatical structure of a language (a key example being S → NP VP, meaning a sentence is a noun phrase and a verb phrase, with each in turn having other components which have other components), the way web pages are logically ordered in a web site, mathematical trees of integer sets, et cetera.