*** Welcome to piglix ***

Tree (set theory)


In set theory, a tree is a partially ordered set (T, <) such that for each tT, the set {sT : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.

A tree is a partially ordered set (poset) (T, <) such that for each tT, the set {sT : s < t} is well-ordered by the relation <. In particular, each well-ordered set (T, <) is a tree. For each tT, the order type of {sT : s < t} is called the height of t (denoted ht(tT)). The height of T itself is the least ordinal greater than the height of each element of T. A root of a tree T is an element of height 0. Frequently trees are assumed to have only one root. Note that trees in set theory are often defined to grow downward making the root the greatest node.

Trees with a single root may be viewed as rooted trees in the sense of graph theory in one of two ways: either as a tree (graph theory) or as a trivially perfect graph. In the first case, the graph is the undirected Hasse Diagram of the partially ordered set, and in the second case, the graph is simply the underlying (undirected) graph of the partially ordered set. However, if T is a tree of height > ω, then the Hasse diagram definition does not work. For example, the partially ordered set does not have a Hasse Diagram, as there is no predecessor to ω. Hence we require height at most omega in this case.


...
Wikipedia

...