*** Welcome to piglix ***

Transrapid


Transrapid is a German developed high-speed monorail train using magnetic levitation. Planning for the Transrapid system started in 1969 with a test facility for the system in Emsland, Germany completed in 1987. In 1991, technical readiness for application was approved by the Deutsche Bundesbahn in cooperation with renowned universities.

The current application-ready version, the Transrapid 09, is designed for a cruising speed of 500 km/h (311 mph) and allows acceleration and deceleration of approximately 1 m/s2 (2.24 mi/min2).

In 2004, the first commercial implementation was completed — the Shanghai Maglev Train, which connects the city of Shanghai's rapid transit network 30.5 km (18.95 mi) to Shanghai Pudong International Airport. The Transrapid system has not yet been deployed on a long-distance intercity line.

The system is developed and marketed by Transrapid International, a joint venture of Siemens and ThyssenKrupp.

At the end of 2011, the operating license for the Emsland test track expired, and it closed down. In early 2012, demolition and reconversion of the entire Emsland site including the factory was approved.

The super-speed Transrapid maglev system has no wheels, no axles, no gear transmissions, no steel rails, and no overhead electrical pantographs. The maglev vehicles do not roll on wheels; rather, they hover above the track guideway, using the attractive magnetic force between two linear arrays of electromagnetic coils—one side of the coil on the vehicle, the other side in the track guideway, which function together as a magnetic dipole. During levitation and travelling operation, the Transrapid maglev vehicle floats on a frictionless magnetic cushion with no physical contact whatsoever with the track guideway. On-board vehicle electronic systems measure the dipole gap distance 100,000 times per second to guarantee the clearance between the coils attached to the underside of the guideway and the magnetic portion of the vehicle wrapped around the guideway edges. With this precise, constantly updated electronic control, the dipole gap remains nominally constant at 10 millimetres (0.39 in). When levitated, the maglev vehicle has about 15 centimetres (5.9 in) of clearance above the guideway surface.


...
Wikipedia

...