*** Welcome to piglix ***

Transformation geometry


In mathematics, transformation geometry (or transformational geometry) is the name of a mathematical and pedagogic take on the study of geometry by focusing on groups of geometric transformations, and that are invariant under them. It is opposed to the classical synthetic geometry approach of Euclidean geometry, that focuses on geometric constructions.

For example, within transformation geometry, the properties of an isosceles triangle are deduced from the fact that it is mapped to itself by a reflection about a certain line. This contrasts with the classical proofs by the criteria for congruence of triangles.

The first systematic effort to use transformations as the foundation of geometry was made by Felix Klein in the 19th century, under the name Erlangen programme. For nearly a century this approach remained confined to mathematics research circles. In the 20th century efforts were made to exploit it for mathematical education. Andrei Kolmogorov included this approach (together with set theory) as part of a proposal for geometry teaching reform in Russia. These efforts culminated in the 1960s with the general reform of mathematics teaching known as the New Math movement.

An exploration of transformation geometry often begins with a study of reflection symmetry as found in daily life. The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel. Thus through transformations students learn about Euclidean plane isometry. For instance, consider reflection in a vertical line and a line inclined at 45° to the horizontal. One can observe that one composition yields a counter-clockwise quarter-turn (90°) while the reverse composition yields a clockwise quarter-turn. Such results show that transformation geometry includes non-commutative processes.


...
Wikipedia

...