*** Welcome to piglix ***

Trace-free Ricci tensor


In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, represents the amount by which the volume of a small wedge of a geodesic ball in a curved Riemannian manifold deviates from that of the standard ball in Euclidean space. As such, it provides one way of measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean n-space. The Ricci tensor is defined on any pseudo-Riemannian manifold, as a trace of the Riemann curvature tensor. Like the metric itself, the Ricci tensor is a symmetric bilinear form on the tangent space of the manifold (Besse 1987, p. 43).

In relativity theory, the Ricci tensor is the part of the curvature of space-time that determines the degree to which matter will tend to converge or diverge in time (via the Raychaudhuri equation). It is related to the matter content of the universe by means of the Einstein field equation. In differential geometry, lower bounds on the Ricci tensor on a Riemannian manifold allow one to extract global geometric and topological information by comparison (cf. comparison theorem) with the geometry of a constant curvature space form. If the Ricci tensor satisfies the vacuum Einstein equation, then the manifold is an Einstein manifold, which have been extensively studied (cf. Besse 1987). In this connection, the Ricci flow equation governs the evolution of a given metric to an Einstein metric; the precise manner in which this occurs ultimately leads to the solution of the Poincaré conjecture.


...
Wikipedia

...