The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. Observations of GW170817, the first gravitational wave event due to merging neutron stars (which are thought to have collapsed into a black hole within a few seconds after merging), suggest that the limit is close to 2.17 solar masses. A neutron star in a binary pair has been measured to have a mass close to or slightly above this limit, +0.17
−0.15 2.27M☉. Earlier theoretical work placed the limit at approximately 1.5 to 3.0 solar masses, corresponding to an original stellar mass of 15 to 20 solar masses. In the case of a rigidly spinning neutron star, the mass limit is thought to increase by up to 18%.
The idea that there should be an absolute upper limit for the mass of a cold (as distinct from thermal pressure supported) self-gravitating body dates back to the work of Lev Landau. In 1932, he reasoned based on the Pauli exclusion principle. Pauli's principle shows that the fermionic particles in sufficiently compressed matter would be forced into energy states so high that their rest mass contribution would become negligible when compared with the relativistic kinetic contribution (RKC). RKC is determined just by the relevant quantum wavelength λ, which would be of the order of the mean interparticle separation. In terms of Planck units, with the reduced Planck constant ħ, the speed of light c, and the gravitational constant G all set equal to one, there will be a corresponding pressure given roughly by P = 1/λ4. That pressure must be balanced by the pressure needed to resist gravity. The pressure to resist gravity for a body of mass M will be given according to the virial theorem roughly by P3 = M2ρ4, where ρ is the density. This will be given by ρ = m/λ3, where m is the relevant mass per particle. It can be seen that the wavelength cancels out so that one obtains an approximate mass limit formula of the very simple form M = 1/m2. From this, m can be taken to be given roughly by the proton mass. This even applies in the white dwarf case (that of the Chandrasekhar limit) for which the fermionic particles providing the pressure are electrons. This is because the mass density is provided by the nuclei in which the neutrons are at most about as numerous as the protons. Likewise the protons, for charge neutrality, must be exactly as numerous as the electrons outside.