*** Welcome to piglix ***

Time invariant


A time-invariant (TIV) system has a time-dependent system function that is not a direct function of time. Such systems are regarded as a class of systems in the field of system analysis. The time-dependent system function is a function of the time-dependent input function. If this function depends only indirectly on the time-domain (via the input function, for example), then that is a system that would be considered time-invariant. Conversely, any direct dependence on the time-domain of the system function could be considered as a "time-varying system".

Mathematically speaking, "time-invariance" of a system is the following property:

In the language of signal processing, this property can be satisfied if the transfer function of the system is not a direct function of time except as expressed by the input and output.

In the context of a system schematic, this property can also be stated as follows:

If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. Nonlinear time-invariant systems lack a comprehensive, governing theory. Discrete time-invariant systems are known as shift-invariant systems. Systems which lack the time-invariant property are studied as time-variant systems.

To demonstrate how to determine if a system is time-invariant, consider the two systems:

Since system A explicitly depends on t outside of and , it is not time-invariant. System B, however, does not depend explicitly on t so it is time-invariant.


...
Wikipedia

...