*** Welcome to piglix ***

Linear


Linearity is the property of a mathematical relationship or function which means that it can be graphically represented as a straight line. Examples are the relationship of voltage and current across a resistor (Ohm's law), or the mass and weight of an object. Proportionality implies linearity, but linearity does not imply proportionality

In mathematics, a linear map or linear function f(x) is a function that satisfies the following two properties:

The homogeneity and additivity properties together are called the superposition principle. It can be shown that additivity implies homogeneity in all cases where α is rational; this is done by proving the case where α is a natural number by mathematical induction and then extending the result to arbitrary rational numbers. If f is assumed to be continuous as well, then this can be extended to show homogeneity for any real number α, using the fact that rationals form a dense subset of the reals.

In this definition, x is not necessarily a real number, but can in general be a member of any vector space. A more specific definition of linear function, not coinciding with the definition of linear map, is used in elementary mathematics.

The concept of linearity can be extended to linear operators. Important examples of linear operators include the derivative considered as a differential operator, and many constructed from it, such as del and the Laplacian. When a differential equation can be expressed in linear form, it is generally straightforward to solve by breaking the equation up into smaller pieces, solving each of those pieces, and summing the solutions.


...
Wikipedia

...